/*
 * Copyright (c) 1999 CERN - European Organization for Nuclear Research.
 * 
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear in
 * supporting documentation. CERN makes no representations about the
 * suitability of this software for any purpose. It is provided "as is"
 * without expressed or implied warranty.
 */
package com.l2jmobius.util;
import java.util.Arrays;
/**
 * Modified for Trove to use the java.util.Arrays sort/search
 * algorithms instead of those provided with colt.
 * Used to keep hash table capacities prime numbers.
 * Not of interest for users; only for implementors of hashtables.
 * 
 * Choosing prime numbers as hash table capacities is a good idea
 * to keep them working fast, particularly under hash table expansions.
 * 
 * However, JDK 1.2, JGL 3.1 and many other toolkits do nothing to keep capacities prime.
 * This class provides efficient means to choose prime capacities.
 * 
 * Choosing a prime is O(log 300) (binary search in a list of 300 ints).
 * Memory requirements: 1 KB static memory.
 * @author wolfgang.hoschek@cern.ch
 * @version 1.0, 09/24/99
 */
public final class PrimeFinder
{
	/**
	 * The largest prime this class can generate; currently equal to Integer.MAX_VALUE.
	 */
	public static final int LARGEST_PRIME = Integer.MAX_VALUE; // yes, it is prime.
	
	/**
	 * The prime number list consists of 11 chunks.
	 * Each chunk contains prime numbers.
	 * A chunk starts with a prime P1.
	 * The next element is a prime P2.
	 * P2 is the smallest prime for which holds: P2 >= 2*P1.
	 * The next element is P3, for which the same holds with respect to P2, and so on. Chunks are chosen such that for any desired capacity >= 1000
	 * the list includes a prime number <= desired capacity * 1.11.
	 * Therefore, primes can be retrieved which are quite close to any
	 * desired capacity, which in turn avoids wasting memory.
	 * For example, the list includes
	 * 1039,1117,1201,1277,1361,1439,1523,1597,1759,1907,2081.
	 * So if you need a prime >= 1040, you will find a prime <= 1040*1.11=1154.
 Chunks are chosen such that they are optimized for a hashtable growthfactor of 2.0;
	 * If your hashtable has such a growthfactor then, after initially
	 * "rounding to a prime" upon hashtable construction, it will
	 * later expand to prime capacities such that there exist no better primes.
	 * In total these are about 32*10=320 numbers -> 1 KB of static memory needed.
	 * If you are stingy, then delete every second or fourth chunk.
	 */
	
	private static final int[] PRIME_CAPACITIES =
	{
		// chunk #0
		LARGEST_PRIME,
		
		// chunk #1
		5,
		11,
		23,
		47,
		97,
		197,
		397,
		797,
		1597,
		3203,
		6421,
		12853,
		25717,
		51437,
		102877,
		205759,
		411527,
		823117,
		1646237,
		3292489,
		6584983,
		13169977,
		26339969,
		52679969,
		105359939,
		210719881,
		421439783,
		842879579,
		1685759167,
		
		// chunk #2
		433,
		877,
		1759,
		3527,
		7057,
		14143,
		28289,
		56591,
		113189,
		226379,
		452759,
		905551,
		1811107,
		3622219,
		7244441,
		14488931,
		28977863,
		57955739,
		115911563,
		231823147,
		463646329,
		927292699,
		1854585413,
		
		// chunk #3
		953,
		1907,
		3821,
		7643,
		15287,
		30577,
		61169,
		122347,
		244703,
		489407,
		978821,
		1957651,
		3915341,
		7830701,
		15661423,
		31322867,
		62645741,
		125291483,
		250582987,
		501165979,
		1002331963,
		2004663929,
		
		// chunk #4
		1039,
		2081,
		4177,
		8363,
		16729,
		33461,
		66923,
		133853,
		267713,
		535481,
		1070981,
		2141977,
		4283963,
		8567929,
		17135863,
		34271747,
		68543509,
		137087021,
		274174111,
		548348231,
		1096696463,
		
		// chunk #5
		31,
		67,
		137,
		277,
		557,
		1117,
		2237,
		4481,
		8963,
		17929,
		35863,
		71741,
		143483,
		286973,
		573953,
		1147921,
		2295859,
		4591721,
		9183457,
		18366923,
		36733847,
		73467739,
		146935499,
		293871013,
		587742049,
		1175484103,
		
		// chunk #6
		599,
		1201,
		2411,
		4831,
		9677,
		19373,
		38747,
		77509,
		155027,
		310081,
		620171,
		1240361,
		2480729,
		4961459,
		9922933,
		19845871,
		39691759,
		79383533,
		158767069,
		317534141,
		635068283,
		1270136683,
		
		// chunk #7
		311,
		631,
		1277,
		2557,
		5119,
		10243,
		20507,
		41017,
		82037,
		164089,
		328213,
		656429,
		1312867,
		2625761,
		5251529,
		10503061,
		21006137,
		42012281,
		84024581,
		168049163,
		336098327,
		672196673,
		1344393353,
		
		// chunk #8
		3,
		7,
		17,
		37,
		79,
		163,
		331,
		673,
		1361,
		2729,
		5471,
		10949,
		21911,
		43853,
		87719,
		175447,
		350899,
		701819,
		1403641,
		2807303,
		5614657,
		11229331,
		22458671,
		44917381,
		89834777,
		179669557,
		359339171,
		718678369,
		1437356741,
		
		// chunk #9
		43,
		89,
		179,
		359,
		719,
		1439,
		2879,
		5779,
		11579,
		23159,
		46327,
		92657,
		185323,
		370661,
		741337,
		1482707,
		2965421,
		5930887,
		11861791,
		23723597,
		47447201,
		94894427,
		189788857,
		379577741,
		759155483,
		1518310967,
		
		// chunk #10
		379,
		761,
		1523,
		3049,
		6101,
		12203,
		24407,
		48817,
		97649,
		195311,
		390647,
		781301,
		1562611,
		3125257,
		6250537,
		12501169,
		25002389,
		50004791,
		100009607,
		200019221,
		400038451,
		800076929,
		1600153859
	};
	static
	{ // initializer
		// The above prime numbers are formatted for human readability.
		// To find numbers fast, we sort them once and for all.
		
		Arrays.sort(PRIME_CAPACITIES);
	}
	
	/**
	 * Returns a prime number which is >= desiredCapacity and very close to desiredCapacity (within 11% if desiredCapacity >= 1000).
	 * @param desiredCapacity the capacity desired by the user.
	 * @return the capacity which should be used for a hashtable.
	 */
	public static final int nextPrime(int desiredCapacity)
	{
		int i = Arrays.binarySearch(PRIME_CAPACITIES, desiredCapacity);
		if (i < 0)
		{
			// desired capacity not found, choose next prime greater
			// than desired capacity
			i = -i - 1; // remember the semantics of binarySearch...
		}
		return PRIME_CAPACITIES[i];
	}
}